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The three most widely used methods for analyzing atomic structures are evaluated by simulating crystalline
solids and supercooled liquids. The local order parameter approach due to Volkov et al. �Phys. Rev. E 66,
061401 �2002�� fails in randomly perturbed body-centered-cubic environments, while the pair analysis method
behaves as an approximate approach depending on how the neighborhood is defined. As to the Voronoi analysis
method, we improve the procedure of Brostow et al. �Phys. Rev. B 57, 13448 �1998�� to eliminate distorted
Voronoi faces and edges which originate from thermal vibrations and computational rounding errors. The
improved procedure works robustly in face-centered-cubic, body-centered-cubic, and hexagonal close-packed
environments. When the pair analysis technique and the Voronoi analysis method are applied to detect the
microstructure and its evolution in supercooled liquids, qualitatively consistent results are attained.
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I. INTRODUCTION

Nucleation and glass transition in supercooled liquids
have been actively studied by computer simulations and ex-
periments �1–8�. However, there remain many open ques-
tions on the detailed knowledge of the microscopic structure
and its evolution in supercooled liquids, whether for mon-
atomic model systems such as Lennard-Jones �LJ� fluids
�3–6� or for much practical systems such as colloids �7–11�,
liquid metals, and alloys �12–17�. In the structure analysis
process of those computer-simulated or experimentally pre-
pared materials, a robust analysis method is believed to be
the key to achieve reliable results �2–5,8,10,11,13�.

Methods using local bond-orientational order parameters
�5,18� have gained increasing interests �5–8,11�. In the origi-
nal method of ten Wolde et al. �5,6�, structure components
are attained by comparing the distributions of local order
parameters between the interested cluster and typical equilib-
rium structures, such as face-centered-cubic �fcc�, hexagonal
close-packed �hcp�, body-centered-cubic �bcc�, icosahedral
�ico� environments, and so on �5–8�. Another version of this
method was given by Volkov et al., who compared the local
order parameters of perfect structures with the corresponding
ones of each atom in the studied materials �11�. This ap-
proach avoids the difficulties in preparing typical quasiequi-
librium structures, but has not been widely validated even in
equilibrium crystalline solids.

There are alternative approaches to analyze microstruc-
tures based on the operation of graphs. One is the pair analy-
sis technique first introduced by Andersen and co-workers
�3,19�. In this method, pair indices are given for each pair of
atoms in order to describe the neighborhood of this pair.
Though is favored as a common technique for analyzing pair
structures �13–17,19–21�; this approach is not able to iden-
tify which structure does a particular atom belong to, in su-
percooled liquids. Furthermore, the dependence of pair indi-

ces on the definition of neighboring atoms has not been
estimated.

A more complicated approach is the Voronoi analysis
method �4,10,22–24�, which was first used by Finney as
early as 1970 �22�. For each particle, an associated Voronoi
polyhedron is created, whose shape characterizes the local
structure. Unfortunately, there are vertices where four faces
meet in the Voronoi polyhedron in fcc and hcp environments.
These vertices are unstable and often split into small faces or
edges because of thermal fluctuations and rounding errors in
computation. Then the Voronoi polyhedron is distorted.
Physicists used to eliminate all the edges shorter than a
threshold value to reduce this distortion �4,23�. However, for
crystals at higher temperatures relevant to supercooled liq-
uids, the faces and edges resulting from thermal vibrations
may be comparable to the original ones, and it is not very
reasonable to eliminate all edges shorter than a single thresh-
old value. To overcome this difficulty, Brostow et al. pro-
posed an iteration process to choose a particular value for
each Voronoi polyhedron �24�. Their approach seems to be
efficient in moderately perturbed fcc and hcp lattices �24�,
but has not been tested in perturbed bcc lattices and equilib-
rium fcc and hcp lattices at higher temperatures.

In the present work, we examine the above-mentioned
methods by simulating bcc, fcc, and hcp lattices and super-
cooled liquids. The local order parameter method due to
Volkov et al. �11� is shown to mistake atoms in randomly
perturbed bcc environments for hcp or fcc structures. The
dependence of pair indices on the definition of neighboring
atoms in the pair analysis method is evaluated at different
temperatures. By analyzing the characteristics of Voronoi
faces and edges, we have further modified the Voronoi face
and edge elimination process. Results are compared when
the last two methods are applied to analyze the microstruc-
ture and its evolution in supercooled liquids.

II. STRUCTURE ANALYSIS METHODS

A. Portrayal of the systems

The simulation systems are generated by placing 32 000
and 34 992 atoms in perfect fcc and hcp lattices, respectively.
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The particles are interacted with each other by a so-called
shifted LJ potential �4,19�, in which the conventional LJ po-
tential is truncated to zero for distances larger than 2.5 in
reduced LJ units and shifted upward by the potential value at
this distance. The units of all qualities are conventionally
reduced. NVT ensemble molecular-dynamics �MD� simula-
tions of constraint method �25,26� are performed at reduced
temperature T*=0.6 and density �*=0.95 in cubic with peri-
odic boundary conditions. The equations of motion are inte-
grated by the velocity Verlet scheme �27� with a time step
�t*=0.005.

After equilibrium, coordinates of particles are recorded
for further analysis and the distributions of atomic displace-
ments are calculated. An identical Gaussian form is shared
by all the distributions of atomic displacements in three di-
mensions for both equilibrium fcc and hcp lattices. In order
to collect the information in the bcc environment, which
lacks mechanical stability in the LJ system, we use the
Gaussian distribution to perturb the perfect bcc lattice.

In order to prepare a metastable liquid, the fcc lattice is
heated and equilibrated to a temperature as high as T*=1.2.
Then the system is cooled and relaxed to T*=0.6. The radial
distribution function �RDF� is checked to be of typical liquid
character in each situation.

B. Local order parameter method

The local order parameter method devised by ten Wolde
et al. �5,6� starts from a definition of neighbors or bonds for
each atom i, by choosing all particles j within a given radius
rq from i. According to the bond-orientational order param-
eters proposed by Steinhardt and co-workers �18�, ten Wolde
et al. constructed a series of local order parameters ql�i� and
wl�i� �5�. For any interested cluster, the distributions of local
order parameters ql�i� and wl�i� are measured and fitted to
those of typical equilibrium structures, in order to calculate
the structure components of the cluster �5–8�.

Generally, the distributions of local order parameters for
metastable structures, which have been proved to be ultraim-
portant in supercooled liquids, are not easy to be gathered
�7�. This is because of the difficulties in generating bulk
long-lived metastable systems. Moreover, the distributions of
local order parameters may be too rough to fit in tiny clus-
ters, which become more important in highly supercooled
liquids �4�. An alternative approach was given by Volkov
et al. �11�. In their method, the local order parameters ql�i�
and wl�i� of perfect structures are employed to fit the corre-
sponding ones of each atom in the studied configurations.
Then the atom is assigned to the structure with the biggest
component.

However, we find that this alternative approach could be
very dangerous. As shown in Fig. 1, though they have dis-
tinct differences, the distributions of local order parameters
from different structures intersect with each other. Similar
behavior was presented in the experiment of colloidal crys-
tallization �8�. This means that the local order parameters of
atoms with different equilibrium structures could be identi-
cal, especially in higher-temperature systems, in which the
distributions of local order parameters become flatter and the

peak positions of the distributions depart from the corre-
sponding ones in perfect structures. In fact, we have used the
method of Volkov et al. to identify the perturbed bcc lattice;
82.22% and 17.65% of bcc atoms have been mistaken for
hcp and fcc structures, respectively, while the same lattice
can be recognized as bcc structure by the pair analysis
method and Voronoi analysis method. Although one can at-
tribute this to the artificial preparing method of bcc structure,
that failure at least suggests a possible risk when this version
of local order parameter method is applied, especially in su-
percooled liquids or solids at relatively higher temperatures.

C. Pair analysis technique

In the pair analysis technique, a threshold value rc is in-
troduced to define neighbors as those distances r�rc, and
each pair of atoms is characterized by four indices �3,19�.
The first index is assigned as 1 if the composing atoms of the
pair are neighbors and 2 otherwise. The second index records
the number of commonly neighboring atoms shared by the
pair, and the third one represents the number of nearest-
neighbor bonds between those commonly neighboring at-
oms. The fourth index is used to distinguish different topolo-
gies of atomic packings with the same first three indices.
Different kinds of structures have their typical indices. For
example, if we limit our discussion to the pairs bonded by
neighboring atoms, only 1421 pairs are presented in the fcc
crystal, while 1421 and 1422 pairs are contained in the hcp
lattice. 1441 and 1661 are typical pairs of bcc lattices, and
1551 is considered as a direct measurement of the ico envi-
ronments �3,20�.

Generally, the pair indices vary with the threshold value
rc. Take the perfect bcc lattice as an example; if we only
consider the first nearest neighbors, all the indices will be
1001. However, if both the first and second nearest neighbors
are taken into account, the indices will be 1441 or 1661.
Figure 2 shows the fraction of 1421 pairs as a function of rc
in equilibrium fcc crystals at different temperatures. The pair
indices are more sensitive to rc at higher temperatures, and

FIG. 1. Distributions of local order parameters q6�i�, q4�i�,
w6�i�, and w4�i� in equilibrium fcc, hcp, and perturbed bcc lattices.
All the results are based on averages over 20 independent
configurations.
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unreasonable results would be gathered if the threshold value
rc was not chosen properly. In fact, 1421 is easily mistaken
for 1311, 1411, 1431, 1441, or even 1541. The optimal value
of rc is found to be at the position of the first minimum in the
RDF for fcc and hcp lattices, and the second minimum in the
RDF for bcc lattices.

Once we set rc following the above principle �i.e., 1.38 for
fcc or hcp lattices and 1.54 for bcc lattices in reduced units in
our simulation�, 83.80% of pairs are recognized as 1421 in
fcc lattices at the temperature T*=0.6. Percentages of the
1421 and 1422 pairs in hcp crystals at the same temperature
are 42.07% and 42.29%, respectively, and 37.80% and
49.14% of pairs are identified as 1441 and 1661 in bcc lat-
tices. Although the majority of the pairs are typical ones of
the corresponding lattice, errors are larger than 10% in each
case. In fact, because of the vibration of atoms in lattices, it
is not very reasonable to take a single threshold value rc to
define neighboring atoms. The dependence of the pair indi-
ces on rc will become more severe in supercooled liquids. It
comes from the variety of pair indices and the heterogeneity
of local structure �13–17,19�. Moreover, both the local struc-
ture and the position of the vale in the RDF shift during
solidification. From these senses, the pair analysis technique
only serves as an approximate structure analysis method for
supercooled liquids in our opinion.

D. Voronoi analysis approach

The Voronoi polyhedron associated with a particle is de-
fined as an assembly of points which are closer to that par-
ticle than any of the other particles in the system �22�. There
are various ways to construct Voronoi polyhedra for a given
configuration. The commonly used approaches in condensed
matter physics and material science are attributed to Finney
�28�, Brostow et al. �29� and Tanemura et al. �30�. We
choose here the algorithm proposed by Tanemura et al.,
which seems to be more efficient than the former �30�. De-
launay tetrahedra, whose vertices are sets of four atoms con-
tiguous with each other, are built at the first step in this

algorithm. The centers of the spheres circumscribing these
Delaunay tetrahedra form the dual Voronoi vertices �30�.

After the construction of Voronoi polyhedra, the face ar-
eas and edge lengths of Voronoi polyhedra are calculated.
Figures 3 and 4 present the statistical distributions of the face
areas and edge lengths for atoms in fcc, bcc, hcp, and liquid
environments. The double peaks in the face area distribution
for atoms in bcc lattices are due to four-sided faces and six-
sided faces, respectively.

For fcc and hcp lattices, the distributions of the face areas
and edge lengths are bimodal but separated by nonzero
minima. The first peak originates from the distorted faces or
edges due to thermal fluctuations and computational round-
ing errors, and the second peak results from the real faces or
edges. The nonzero minima between them mean that the dis-
torted faces and edges are too large to be distinguished from
the real ones. Therefore, it is not reasonable enough to take a
single threshold value to define these distorted faces or edges
�24�. Particularly, we find that many distorted edges are not
usually smaller than the edges associated with four-sided

FIG. 2. Fractions of 1421 pairs in fcc lattices at different tem-
peratures T*, as a function of the threshold value rc. The position of
the first minimum in the RDF is 1.38 in each case. T* and rc are in
reduced LJ units.

FIG. 3. Face area distributions of the Voronoi polyhedra for
atoms in fcc, bcc, hcp, and liquid environments at the temperature
T*=0.6. Results are based on averages over ten independent con-
figurations. The face areas are in reduced LJ units.

FIG. 4. Edge length distributions of the Voronoi polyhedra for
atoms in fcc, bcc, hcp, and liquid environments at the temperature
T*=0.6. Results are based on averages over ten independent con-
figurations. The edge lengths are in reduced LJ units.
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faces. Note that the edges associated with four-sided faces
are indispensable to the Voronoi polyhedron in fcc or hcp
lattices.

Therefore, we introduce four threshold parameters a, b, x,
and y to modify the distorted face and edge elimination pro-
cedure. a and b define the scales of “sightless” faces and
edges generating from computational rounding errors. x
specifies the maximum area of distorted faces, and y defines
the maximum length of distorted edges from thermal vibra-
tions and computational rounding errors. The procedure is
executed as follows. First, choose a Voronoi polyhedron and
eliminate all the faces smaller than a and all the edges
shorter than b. If the Voronoi polyhedron belongs to the pre-
defined structures—i.e., fcc, hcp, bcc, or ico environments—
compute the next Voronoi polyhedron; otherwise, go to the
second step. Second, find the smallest survived face. If the
selected face is smaller than x and the total number of sur-
vived faces is more than 12, eliminate this face and repeat
this step. If the total number of survived faces equals 12 and
the Voronoi polyhedron does not belong to any predefined
structures, switch to the third step; otherwise, compute the
next Voronoi polyhedron. Third, find the surviving edges
which are intersections between more than four-sided faces,
and pick up the smallest one among them. If the selected
edge is shorter than y, eliminate this edge. This step is iter-
ated until a predefined structure is found or the selected edge
is not shorter than y. Fourth, once the former three steps are
executed over all atoms, a conventional cluster recognizing
method �26� is applied to identify crystalline clusters of at-
oms with the same structures. The clusters that contain fewer
than ten atoms are deleted and the atoms are assigned to
liquid structure.

The first step in the above process is essential to reduce
errors between different structures. For example, we have

found that a few Voronoi polyhedra with some tiny faces or
edges are mistaken for bcc topologies in equilibrium fcc or
hcp lattices. The parameters a and b are selected as 0.01 and
0.05, respectively, in our simulations, in order to ensure that
the errors between different structures are less than 1%. The
additional threshold parameters x and y are chosen to be
slightly larger than the first minimum positions of the face
area and edge length distributions for fcc and hcp environ-
ments. This turns out to be 0.2 and 0.4 in reduced units,
respectively, in our simulation. With the modified procedure
and parameters discussed above, more than 90% of atoms in
crystalline solids are correctly identified, as shown in Table I.
The distributions of face areas, edge lengths, and distances
between nearest neighbors are monomodal and nearly
smooth for supercooled liquid at the temperature T*=0.6, as
shown in Figs. 5–7.

FIG. 5. Distributions of the survived face areas by the modified
Voronoi face and edge elimination procedure. Results are based on
averages over five independent configurations. The face areas are in
reduced LJ units.

TABLE I. Structure components and average number of survived faces �ANF� after different Voronoi face
and edge elimination processes for different kinds of configurations. In the original method 1 �OM1�, all the
faces smaller than 0.1 and edges shorter than 0.15 are cut. Then an iteration process is used to eliminate small
edges coupling with an upper edge length limit 0.4. In the original method 2 �OM2�, the same procedure is
applied but the parameters are 0.01, 0.05, and 0.4, respectively. All the results are based on averages over ten
independent configurations.

Configurations Methods

Structure components

ANFfcc bcc hcp ico Others

fcc This work 91.363% 0.250% 0.034% 0.025% 8.328% 11.994

OM1 83.694% 0 0 0 16.306% 11.906

OM2 59.850% 0.250% 0 0.025% 39.875% 12.282

bcc This work 0 95.274% 0.134% 0 4.592% 13.914

OM1 0.022% 45.373% 0.074% 0 54.534% 11.673

OM2 0 95.293% 0 0 4.707% 13.793

hcp This work 0 0.480% 90.998% 0.034% 8.488% 11.995

OM1 0 0 75.920% 0 24.08% 11.897

OM2 0 0.480% 55.281% 0.034% 44.205% 12.242

Liquid This work 0 0 0 2.428% 97.572% 11.969

OM1 0.081% 0 0.184% 1.091% 98.644% 10.146

OM2 0.053% 0.063% 0.119% 1.847% 97.918% 11.113
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Table I also shows the comparison between the results of
the modified process and those by the original method of
Brostow et al. �24�. It is obvious that our process performs
better in fcc and hcp lattices and well enough in bcc lattices.
For supercooled liquid, the average numbers of survived
faces are about 12 and 11 or even 10 in the results of our
modified approach and the original method, respectively. The
surviving Voronoi faces function as perpendicular bisectors
between neighboring atoms. If we define two atoms as
neighbors when their distance is less than the position of the
first minimum in the RDF, the average number of neighbors
per atom will be between 12 and 13. From the comparison,
we believe that the modified process is safer for protecting
Voronoi faces than the original methods are. The improve-
ment benefits from two aspects: one is the separation of face
and edge cutting processes, making the edge elimination not
affect the number of Voronoi faces, and the other is the pro-
tection of edges in four-sided faces; it is very important for
fcc or hcp lattices.

III. APPLICATIONS

The pair analysis technique and the Voronoi analysis
method discussed above are employed to analyze the struc-
ture of supercooled liquid and its evolution during solidifi-
cation. The systems are prepared using the same way as
mentioned above. The temperatures are set as T*=0.6 and
T*=0.5, respectively. We find that the supercooled liquid at
the temperature T*=0.6 stays in metastable state in 200 000
time steps, while solidification occurs in supercooled liquid
at the temperature T*=0.5.

Table II shows the diversity of pair indices in supercooled
liquids at T*=0.6 by the pair analysis approach. The thresh-
old value rc is at the first minimum in the RDF as ordinarily
taken �3,13–17,19–21�—i.e., 1.50 in reduced units. Although
there is abundance of 1551, 1541, and 1431 pairs, atoms in
liquid environments are usually bonded by a variety of pairs.
This explains the reason why the fraction of atoms with ico
environments is only 2.428% �shown in Table I�, while the
percentage of 1551 pairs is as great as 25.55%.

For supercooled liquid at the temperature T*=0.5, the
structure components and the fractions of pair indices vary
with time. The time evolutions of structure components,
which are gathered by the Voronoi analysis method com-
bined with the modified face and edge elimination process,
are shown in Fig. 8. At the initial stage, the fraction of atoms
with ico environments decreases rapidly, while the percent-

FIG. 8. Evolution of structure components in supercooled LJ
liquids at the temperature T*=0.5 by Voronoi analysis method. Re-
sults are based on averages over ten independent configurations.

FIG. 6. Distributions of the survived edge lengths by the modi-
fied Voronoi face and edge elimination procedure. Results are based
on averages over five independent configurations. The edge lengths
are in reduced LJ units.

FIG. 7. Distributions of distances between nearest neighbors
defined by Voronoi face with the modified Voronoi face and edge
elimination procedure. Results are based on averages over five in-
dependent configurations. The distances are in reduced LJ units.

TABLE II. Fractions of pair indices in supercooled liquids at a
temperature T*=0.6. Nearest neighbors are defined as those dis-
tances r�rc=1.50. All the results are based on averages over ten
independent configurations.

Pairs Fractions Pairs Fraction

1551 25.550% 1422 5.342%

1541 20.421% 1421 2.873%

1431 18.416% 1321 2.423%

1661 9.086% 1311 2.318%

1441 6.737% Others 6.834%
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ages of fcc and hcp atoms increase. This suggests that the
stability of metastable liquids is correlated with the existence
of ico structures �1,3,4,12,18�. The fraction of bcc atoms
increases at the beginning and then decreases.

Comparing our simulation results with those of Swope
and Andersen �4�, we notice that the percentage of hcp atoms
is somehow larger and the fraction of bcc atoms decrease
slower in our simulation. The percentage of hcp atoms acts
alike that in the work of O’ Malley and Snook �10� in hard-
sphere systems. We believe that the discrepancies come from
the differences of the system conditions under consideration.
The microstructure evolution in supercooled liquids should
be considered associated with the thermodynamic conditions
and the initial structure of the system �4,6,12�.

Figures 9 and 10 present the evolution of pair indices. In
Fig. 9, we take the definition of nearest neighbors as those
whose distances are shorter than rc=1.45. This threshold
value equals the average of the first minimum positions in
radial distribution functions before and after solidification.
The value of rc is updated during the evolution of the system,

as indicated in Fig. 10. In both figures, the decrease of the
1551 pairs is accompanied by an increase of the 1421 pairs.
For the fraction of 1422 pairs, Fig. 9 shows a much slower
increase than Fig. 10. In this sense, Fig. 10 is more consistent
with Fig. 8. The 1441, 1661, 1431, and 1541 pairs also show
similar while different in quantity trends in both figures. The
differences between Figs. 9 and 10 provide evidence that the
pair indices are sensitive to the neighborhood definition in
supercooled liquids.

When compared with the analysis of Swope and Andersen
�4�, the Voronoi analysis method combined with our modi-
fied face and edge elimination process is more stable and
reliable, as shown in Fig. 8. Moreover, the results from the
pair analysis technique, where the threshold value rc is taken
to be at the first minimum position of the RDF, and from the
Voronoi analysis method, combined with our modified face
and edge cutting processes, are qualitatively consistent with
each other.

IV. CONCLUSIONS

We have examined the three most widely used micro-
structure analysis methods in equilibrium fcc, hcp, and ran-
domly perturbed bcc crystalline solids and supercooled liq-
uids.

The distributions of local order parameters from different
crystalline structures intersect with each other, and the local
order parameter approach due to Volkov et al. �11� fails in a
randomly perturbed bcc lattice.

The pair analysis technique behaves as an approximate
approach depending on how the neighborhood is defined.
The pair indices become more sensitive to rc at higher tem-
peratures. The optimal value of rc is at the position of the
first minimum in the RDF for fcc and hcp lattices, and the
second minimum in the RDF for bcc lattices.

The face area and edge length distributions are bimodal
and separated by nonzero minima in equilibrium fcc and hcp
lattices. The extra edges resulting from thermal vibrations
are comparable to real edges at the higher temperatures rel-
evant to supercooled liquids. In order to protect real edges,
especially those in four-sided faces of fcc and hcp lattices,
we modify the Voronoi face and edge elimination processes.
Compared with the original methods, our modified approach
performs better in fcc and hcp lattices, safer in supercooled
liquids, and well enough in bcc lattices. The parameters in
the modified procedure could be a little bit different, in order
to get more precise results in different cases. The separation
of the face and edge cutting procedures, the iteration process
for cutting edges �24�, and the protection of edges in four-
sided faces are important in the Voronoi analysis method,
especially for supercooled liquids.

Qualitatively consistent results are attained when the pair
analysis technique and the Voronoi analysis method are prop-
erly applied to catch the information of microstructure and
its evolution in supercooled liquids.
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FIG. 9. Evolution of pair indices in supercooled LJ liquids at
T*=0.5 by pair analysis method. Results are based on averages over
ten independent configurations. rc is 1.45 in reduced LJ units.

FIG. 10. Evolution of pair indices in supercooled LJ liquids at
T*=0.5 by pair analysis method. Results are based on averages over
ten independent configurations. The value of rc is updated immedi-
ately during the system evolution.
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